Mud rotary is often used in soft sediments that may or may not be saturated with groundwater. Borehole advancement by mud rotary drilling is achieved by the rapid rotation of a drill bit which is mounted at the end of the drill pipe. The drill bit cuts the formation into small pieces, called cuttings, which are removed by pumping drilling fluid, called mud, through the drill pipe, out the drill bit and up the annulus between the borehole and drill pipe. The drilling fluid is also used to cool the drill bit and stabilize the borehole wall, prevent fluid loss into the formation and to reduce cross-contamination between aquifers. Once the mud returns to the surface, it is captured in a mud pan where the cuttings settle to the bottom and the mud is recirculated down the borehole. Additional mud is introduced as the borehole gets deeper and fluids are lost to the formation.
Standard split-barrel and thin-wall sampling are available in unconsolidated formations, while a broad range of coring equipment is supported for consolidated rock. Hydrologic conditions have little effect on mud rotary drilling and operations usually are unhindered by the presence of groundwater. Mud rotary drilling readily supports the telescoping of casings to successively smaller sizes. This isolates drilled intervals and protects lower geologic units from contamination by previously drilled and contaminated upper sediments. Mud rotary drilling can be a more advantageous method versus hollow stem auger drilling. It is a very fast and efficient way of drilling that is adaptable to a wide range of geologic conditions. Only exceptionally large, poorly stabilized boulders or cavernous conditions are unsuited for mud rotary drilling.
If you want to know the price of rotary rock core barrel, please contact us!